- Pour convertir 4/5, il suffit de diviser le numérateur par le dénominateur (4 ÷ 5) et vous obtenez 0,8.
- De même, 75/100 devient 0,75 lorsque vous divisez 75 par 100.
- Enfin, 5/10 devient 0,5 lorsque l’on divise 5 par 10.
La conversion des nombres d’une base à une autre est une compétence fondamentale utilisée dans divers domaines, notamment l’informatique, les mathématiques et l’ingénierie. La conversion de nombres décimaux en nombres binaires, de nombres décimaux en nombres hexadécimaux et de nombres décimaux en nombres octaux fait partie des conversions les plus courantes. Dans cet article, nous verrons comment convertir un nombre décimal et répondrons à quelques questions connexes.
Pour convertir un nombre décimal dans une autre base, nous devons suivre quelques étapes simples :
Étape 2 : Divisez le nombre décimal par la base et notez le reste.
Étape 3 : Divisez à nouveau le quotient obtenu à l’étape 2 par la base et notez le reste.
Étape 5 : Écrire les restes obtenus dans l’ordre inverse. Le nombre obtenu est le nombre décimal converti dans la base souhaitée.
Par exemple, convertissons le nombre décimal 57 en base 2 (binaire) :
Étape 2 : 57/2 = 28 reste 1
Étape 4 : 14/2 = 7 reste 0
Comment calculer la base 16 ?
La base 16, également connue sous le nom d’hexadécimal, est une base qui utilise 16 chiffres (0-9 et A-F). Pour convertir un nombre décimal en base 16, on peut suivre les mêmes étapes que ci-dessus, mais il faut utiliser les restes obtenus pour trouver le chiffre hexadécimal correspondant.
Étape 1 : La base souhaitée est 16.
Étape 3 : 15/16 = 0 reste 15 (Ce reste représente également F)
Étape 5 : L’équivalent hexadécimal de 255 est FF.
Comment convertir un nombre binaire en nombre hexadécimal ?
La conversion d’un nombre binaire en un nombre hexadécimal est une tâche courante en informatique. Pour ce faire, nous pouvons regrouper les chiffres binaires en ensembles de quatre, en commençant par le chiffre le plus à droite. Ensuite, nous remplaçons chaque groupe de quatre chiffres par le chiffre hexadécimal correspondant.
Étape 1 : Grouper les chiffres binaires en ensembles de quatre : 1101 1010
Étape 3 : L’équivalent hexadécimal de 11011010 est DA.
Comment fonctionne la base 16 ?
La base 16 est une base pratique pour travailler en informatique, car elle est facile à convertir en binaire. Chaque chiffre hexadécimal représente un groupe de quatre chiffres binaires, ce qui facilite la conversion entre les deux bases. En outre, la base 16 est utilisée pour représenter les couleurs en HTML et CSS, où chaque couleur est représentée par une combinaison de trois chiffres hexadécimaux. Dans l’ensemble, la compréhension de la conversion entre différentes bases, y compris la base 16, est une compétence essentielle pour toute personne travaillant dans le domaine de l’informatique ou dans des domaines connexes.
Comment changer de base ?
Pour changer la base d’un nombre, il faut d’abord le convertir en décimal, puis le convertir dans la base souhaitée en suivant les étapes décrites ci-dessus. Par exemple, pour convertir un nombre de la base 8 à la base 2, il faut d’abord le convertir en décimal, puis le convertir en binaire.
Pour convertir un nombre binaire en octet, vous devez disposer de 8 bits de chiffres binaires. Si le nombre binaire que vous avez n’est pas de 8 bits, vous devez ajouter des zéros en tête pour qu’il soit de 8 bits. Une fois que vous avez un nombre binaire de 8 bits, vous pouvez le convertir en décimal, ce qui vous donnera la valeur de l’octet. Vous pouvez également utiliser un convertisseur binaire-décimal pour trouver la valeur décimale du nombre binaire, puis convertir la valeur décimale en octets.